Najnowsze odkrycia w badaniu zagadnień wszechświata
Zgodnie z zasadami współczesnej fizyki wszechświat jest izotropowy, czyli powinien mieć ten sam wygląd i tak samo rozprzestrzeniać się we wszystkich kierunkach od czasu Wielkiego Wybuchu sprzed 14 mld lat. Jednak badanie promieniowaniem rentgenowskim odległości do gromad galaktyk na niebie wskazuje, że niektóre z nich są znacznie bliżej lub dalej niż przewiduje izotropia. To odkrycie może być dowodem, że wszechświat jest w rzeczywistości anizotropowy – w niektórych regionach rozszerza się szybciej niż w innych.
Neutrina – cząstki elementarne o zerowym ładunku elektrycznym – mogą być odpowiedzialne za to, że kosmos po Wielkim Wybuchu zawiera materię zamiast pustki. Wyniki eksperymentów wykonanych w wodnym detektorze promieniowania Czerenkowa Super-Kamiokande w Japonii wskazują, że w pierwszych chwilach istnienia wszechświata cząstki te mogły przechylić równowagę między materią a antymaterią. Detektor został wykorzystany do obserwacji neutrin oraz ich antymaterii, antyneutrin, wygenerowanych w oddalonym o 295 km kompleksie badawczym akceleratora protonów J-PARC w japońskim Tokai. Wytworzone cząsteczki podróżują pod powierzchnią ziemi i są wychwytywane w detektorze Super-Kamiokande, w znajdującym się 1000 m pod ziemią zbiorniku zawierającym 50 tys. t bardzo czystej wody.
Podczas pierwszych ułamków sekundy Wielkiego Wybuchu w gorącym, gęstym wszechświecie wirowały pary cząstek i antycząstek, które niszczyły się wzajemnie, produkując czystą energię. Być może to dzięki neutrinom wszechświat, który narodził się z równym bilansem materii i antymaterii, aktualnie ma nadmiar materii: gwiazd, czarnych dziur, oceanów i ludzi.